Раст язык. Язык Rust и почему его надо съесть. Установка на Linux или Mac



На сегодняшний день синтаксис Rust поддерживается в vim и emacs с помощью поставляемых вместе с компилятором синтаксических файлов.
Имеются также синтаксические пакеты для популярного проприетарного редактора Sublime Text 2 и свободного редактора Kate. Поддержки Rust в IDE пока нет. Поддержка отладчиков, судя по всему, тоже отсутствует.

Вместе с компилятором rustc поставляются следующие утилиты:
> rustdoc - утилита для автоматической генерации документации из исходного кода наподобие Doxygen;
> rustpkg - менеджер пакетов, позволяющий легко устанавливать дополнительные пакеты и библиотеки;
> rusti - так называемая REPL-утилита (read-eval-print-loop). По сути это тестовый интерпретатор, который принимает выражение на Rust из командной строки, компилирует его во внутреннее представление LLVM, выполняет и выводит результат;
> rust - универсальная утилита, запускающая другие утилиты или компилятор в зависимости от параметров. У меня она так и не заработала.

Вся доступная документация по языку собрана на официальном сайте www.rust-lang.org. Имеется подробное руководство (http://static.rust-lang.org/doc/tutorial.html) - исчерпывающая формальная документация по всем нюансам синтаксиса, модели памяти, системе времени выполнения и т.п., а также документация по встроенной библиотеке core и стандартной библиотеке std. Вся документация англоязычная. На русском языке актуальных материалов нет, а пара имеющихся обзорных статей уже успели сильно устареть.

Идеология и синтаксис


Rust относится к Си-подобным языкам, использующим фигурные скобки для выделения блоков кода. Язык является «мультипарадигменным», т.е. позволяет писать код в императивно-процедурной, объектно-ориентированной, конкурентной или функциональной манере. Rust компилируется в нативный бинарный код на любой поддерживаемой платформе (использует LLVM в качестве бекэнда). В теории код на Rust не должен уступать в скорости коду на C/C++. Rust позиционируется как системный язык, однако в нем нет встроенной поддержи блоков кода на ассемблере как в «истинных» системных языках С, С++ или D.

Модель памяти Rust изначально не допускает появления нулевых или «висячих» указателей и переполнений буфера. Имеется опциональный сборщик мусора, работающий только в пределах одной нити кода. У языка есть встроенная поддержка легковесной многозадачности и коммуникаций между нитями с помощью обмена сообщениями. Разделяемой памяти (shared memory) в Rust не существует в принципе. Все переменные подразделяются на стековые, переменные кучи для данного потока, и переменные так называемой «обменной» кучи, которые могут читаться всеми потоками, но не могут ими изменяться. Это автоматически исключает «заклинивание» (deadlock), которое считается бичом многопоточного программирования. ABI языка совместим с Си, поэтому программы на Rust могут компоноваться с библиотеками, написанными на Си без дополнительных оберток. Для нужд низкоуровневого системного программирования и для обеспечения совместимости с Си в языке есть особый «небезопасный» режим без проверки корректности указателей. По своей идеологии Rust ближе всего к языку Go. Так же, как и в Go, основной акцент сделан на простоте многопоточного программирования и скорости разработки масштабных приложений, а синтаксис местами так же непривычен и в чем-то удивителен. В то же время Rust не настолько минималистичен, как Go, и претендует на роль системного языка.

Синтаксис Rust большей частью заимствован из С и С++ с примесью идей из языков Go, C#, Haskell, Python и Ruby. Не буду исчерпывающе описывать синтаксис языка, а остановлюсь только на наиболее интересных концепциях.

Rust набирает популярность, но при этом многие до сих пор не понимают его ценности и функций. Мы расскажем про основные преимущества языка программирования Rust.

Что общего у Rust и других языков?

В перечисленные определения сложно поверить, это выглядит нереалистичным заявлением, так как ранее все языки выбирали одну из сторон: надёжность или производительность.

Ярким представителем высокой скорости является , но всем нам известно, как часто появляются ошибки из-за неправильного доступа к выделенной памяти, удалённым серверам, а о непредсказуемых выводах результатов работы и говорить нечего. Из-за нескольких потоков записи часто сложно предсказать результат.

Уклон в сторону надёжности лучшим образом демонстрирует язык Haskell , который имеет компилируемую природу и обеспечивает высокие показатели безопасности. Всё, что можно компилировать, будет исправно работать. Главный недостаток - это низкая производительность, сложно представить проект, требующий высокой скорости написанный на Haskell .

Нейтральную позицию, некоего баланса занимают , и остальные. В них уклон поставлен в практичность.

Rust вобрал в себя лучшие характеристики C++ и Haskell , а также смог сохранить достаточную практичность и функциональность от остальных конкурентов.

В чем же прелесть языка Rust?

Волшебные характеристики Rust стали доступными при помощи основ компилирования и информации о сущности владельца (owner ), о программисте, который только временно отлаживает или занял проект (mutable borrow ), а также об обычном зрителе (immutable borrow ).

При программировании на Java или же C++ , приходится удерживать данную информацию в памяти, хотя вид данных несколько отличается. В Rust это реализуется с помощью языковых конструкций, данная информация облегчает компилятору задачу установления личности и правильности подбора модели поведения. Благодаря компилятору можно гарантировать устранение потенциальных и частых проблем в ходе выполнения кода.

Этому языку необходим несколько отличающийся подход. Несмотря на непривычность, алгоритм достаточно очевидный и эффективный. Теперь мы определимся с основами языка, которые способны завести в тупик при начале изучения:

  1. Полностью устранена система наследования, для замены используется особая структура и способности, подробнее traits .
  2. Присутствуют указатели исключительно в коде, который не подвергается дополнительной защите, то есть внутри функции unsafe {} . Для их замены в безопасном коде используются ссылки, которые обеспечивают правильное указание на имеющиеся объекты.
  3. Если ссылка статическая и ведёт к определённому элементу, например, immutable borrow = &Object , до момента смерти ссылки она не может изменяться любым пользователем.
  4. При наличии изменяющейся ссылки mutable borrow = &mut Object , нельзя прочитать содержимое любому другому пользователю весь период жизни ссылки.
  5. Разработчики делают акцент на Mac и *nix платформы, из-за этого работать на системе Windows можно только с использованием среды GNU .

Достаточно важна целевая аудитория, у языка Rust достаточное активное содружество, развитая система общения и обучения. Рекомендуем посетить канал IRC или Reddit . До сегодняшнего дня уже написано , а большинство из них до сих пор постоянно развиваются, их проекты можно найти на GitHub .

Наибольшая популярность языка отмечается у разработчиков, которые стали на путь создания графики и игр . Существуют даже наработки для создания полноценной операционной системы , но они ещё только разрабатываются. В ближайшей перспективе присутствует возможность написания клиентских программ и веб-серверов . Все перечисленные задачи вполне по плечу Rust.

Главным, а, наверное, и единственным, недостатком является его чрезмерно активное развитие. По мере выхода новых версий несколько изменяется синтаксис, периодически появляется необходимость изменять логику поведения и разработки, чтобы подстроиться под появившиеся возможности. Ситуация будет продолжать ещё некоторое время до момента выхода Rust-1.0 .

Следить за изменениями в языке программирования помогает постоянная рубрика «This Week in Rust », которую можно найти в Rust "n Stuffs по ссылке . Здесь всегда есть информация о предшествующих и прошедших изменениях, а также перспективах развития языка.

Rust - новый экспериментальный язык программирования, разрабатываемый Mozilla. Язык компилируемый и мультипарадигмальный, позиционируется как альтернатива С/С++, что уже само по себе интересно, так как даже претендентов на конкуренцию не так уж и много. Можно вспомнить D Вальтера Брайта или Go от Google.
В Rust поддерживаются функицональное, параллельное, процедурное и объектно-ориентированное программирование, т.е. почти весь спектр реально используемых в прикладном программировании парадигм.

Я не ставлю целью перевести документацию (к тому же она весьма скудная и постоянно изменяется, т.к. официального релиза языка еще не было), вместо этого хочется осветить наиболее интересные фичи языка. Информация собрана как из официальной документации, так и из крайне немногочисленных упоминаний языка на просторах Интернета.

Первое впечатление

Синтаксис языка строится в традиционном си-подобном стиле (что не может не радовать, так как это уже стандарт де-факто). Естественно, всем известные ошибки дизайна С/С++ учтены.
Традиционный Hello World выглядит так:
use std; fn main(args: ) { std::io::println("hello world from " + args + "!"); }

Пример чуть посложнее - функция расчета факториала:

Fn fac(n: int) -> int { let result = 1, i = 1; while i <= n { result *= i; i += 1; } ret result; }

Как видно из примера, функции объявляются в «функциональном» стиле (такой стиль имеет некоторые преимущества перед традиционным «int fac(int n)»). Видим автоматический вывод типов (ключевое слово let), отсутствие круглых скобок у аргумента while (аналогично Go). Еще сразу бросается в глаза компактность ключевых слов. Создатели Rust дейтсвительно целенаправленно сделали все ключевые слова как можно более короткими, и, скажу честно, мне это нравится.

Мелкие, но интересные синтаксические особенности

  • В числовые константы можно вставлять подчеркивания. Удобная штука, сейчас эту возможность добавляют во многие новые языки.
    0xffff_ffff_ffff_ffff_ffff_ffff
  • Двоичные константы. Конечно, настоящий программист должен преобразовывать bin в hex в уме, но ведь так удобнее! 0b1111_1111_1001_0000
  • Тела любых операторов (даже состоящие из единственного выражения) должны быть обязательно заключены в фигурные скобки. К примеру, в Си можно было написать if(x>0) foo(); , в Rust нужно обязательно поставить фигурнные скобки вокруг foo()
  • Зато аргументы операторов if, while и подобных не нужно заключать в кругные скобки
  • во многих случаях блоки кода могут рассматриваться как выражения. В частности, возможно например такое:
    let x = if the_stars_align() { 4 } else if something_else() { 3 } else { 0 };
  • синтаксис объявления функций - сначала ключевое слово fn, затем список аргументов, тип аргумента указывается после имени, затем, если функция возвращает значение - стрелочка "->" и тип возвращаемого значения
  • аналогичным образом объявляются переменные: ключевое слово let, имя переменной, после переменной можно через двоеточие уточнить тип, и затем - присвоить начальное значение.
    let count: int = 5;
  • по умолчанию все переменные неизменяемые; для объявления изменяемых переменных используется ключевое слово mutable.
  • имена базовых типов - самые компактные из всех, которые мне встречались: i8, i16, i32, i64, u8, u16, u32, u64,f32, f64
  • как уже было сказано выше, поддерживается автоматический вывод типов
В языке присутствую встроенные средства отладки программ:
Ключевое слово fail завершает текущий процесс
Ключевое слово log выводит любое выражение языка в лог (например, в stderr)
Ключевое слово assert проверяет выражение, и если оно ложно, завершает текущий процесс
Ключевое слово note позволяет вывести дополнительную инфорацию в случае аварийного завершения процесса.

Типы данных

Rust, подобно Go, поддерживает структурную типизацию (хотя, по утверждению авторов, языки развивались независимо, так что это влияние их общих предшественников - Alef, Limbo и т.д.). Что такое структурная типизация? Например, у вас в каком-то файле объявлена структура (или, в терминологии Rust, «запись»)
type point = {x: float, y: float};
Вы можете объявить кучу переменных и функций с типами аргументов «point». Затем, где-нибудь в другом месте, вы можете объявить какую-нибудь другую структуру, например
type MySuperPoint = {x: float, y: float};
и переменные этого типа будут полностью совместимы с переменными типа point.

В противоположность этому, номинативная типизация, принятая в С, С++,C# и Java таких конструкций не допускает. При номинативной типизации каждая структура - это уникальный тип, по умолчанию несовместимый с другими типами.

Структуры в Rust называются «записи» (record). Также имеются кортежи - это те же записи, но с безымянными полями. Элементы кортежа, в отличие от элементов записи, не могут быть изменяемыми.

Имеются вектора - в чем-то подобные обычным массивам, а в чем-то - типу std::vector из stl. При инициализации списком используются квадратные скобки, а не фигурные как в С/С++

Let myvec = ;

Вектор, тем ни менее - динамическая структура данных, в частности, вектора поддерживают конкатенацию.

Let v: mutable = ; v += ;

Есть шаблоны. Их синтаксис вполне логичен, без нагромождений «template» из С++. Поддерживаются шаблоны функций и типов данных.

Fn for_rev(v: [T], act: block(T)) { let i = std::vec::len(v); while i > 0u { i -= 1u; act(v[i]); } } type circular_buf = {start: uint, end: uint, buf: };

Язык поддерживает так называемые теги . Это не что иное, как union из Си, с дополнительным полем - кодом используемого варианта (то есть нечто общее между объединением и перечислением). Или, с точки зрения теории - алгебраический тип данных.

Tag shape { circle(point, float); rectangle(point, point); }

В простейшем случае тег идентичен перечислению:

Tag animal { dog; cat; } let a: animal = dog; a = cat;
В более сложных случаях каждый элемент «перечисления» - самостоятельная структура, имеющая свой «конструктор».
Еще интересный пример - рекурсивная структура, с помощью которой задается объект типа «список»:
tag list { nil; cons(T, @list); } let a: list = cons(10, @cons(12, @nil));
Теги могут участвовать в выражениях сопоставления с образцом, которые могут быть достаточно сложными.
alt x { cons(a, @cons(b, _)) { process_pair(a,b); } cons(10, _) { process_ten(); } _ { fail; } }

Сопоставление с образцом (pattern matching)

Для начала можно рассматривать паттерн матчинг как улучшенный switch. Используется ключевое слово alt, после которого следует анализируемое выражение, а затем в теле оператора - паттерны и действия в случае совпадения с паттернами.
alt my_number { 0 { std::io::println("zero"); } 1 | 2 { std::io::println("one or two"); } 3 to 10 { std::io::println("three to ten"); } _ { std::io::println("something else"); } }
В качестве «паттеронов» можно использовать не только константы (как в Си), но и более сложные выражения - переменные, кортежи, диапазоны, типы, символы-заполнители (placeholders, "_"). Можно прописывать дополнительные условия с помощью оператора when, следующего сразу за паттерном. Существует специальный вариант оператора для матчинга типов. Такое возможно, поскольку в языке присутствует универсальный вариантный тип any , объекты которого могут содержать значения любого типа.

Указатели. Кроме обычных «сишных» указателей, в Rust поддерживаются специальные «умные» указатели со встроенным подсчетом ссылок - разделяемые (Shared boxes) и уникальные (Unique boxes). Они в чем-то подобны shared_ptr и unique_ptr из С++. Они имеют свой синтаксис: @ для разделяемых и ~ для уникальных. Для уникальных указателей вместо копирования существует специальная операция - перемещение:
let x = ~10; let y <- x;
после такого перемещения указатель x деинициализируется.

Замыкания, частичное применение, итераторы

С этого места начинается функциональное программирование. В Rust полностью поддерживается концепция функций высшего порядка - то есть функций, которые могут принимать в качестве своих аргументов и возвращать другие функции.

1. Ключевое слово lambda используется для объявления вложенной функции или функционального типа данных.

Fn make_plus_function(x: int) -> lambda(int) -> int { lambda(y: int) -> int { x + y } } let plus_two = make_plus_function(2); assert plus_two(3) == 5;

В этом примере мы имеем функцию make_plus_function, принимающую один аргумент «x» типа int и возвращающую функцию типа «int->int» (здесь lambda - ключевое слово). В теле функции описывается эта самая фунция. Немного сбивает с толку отсутствие оператора «return», впрочем, для ФП это обычное дело.

2. Ключевое слово block используется для объявления функционального типа - аргумента функции, в качестве которого можно подставить нечто, похожее на блок обычного кода.
fn map_int(f: block(int) -> int, vec: ) -> { let result = ; for i in vec { result += ; } ret result; } map_int({|x| x + 1 }, );

Здесь мы имеем функцию, на вход которой подается блок - по сути лямбда-функция типа «int->int», и вектор типа int (о синтаксисе векторов далее). Сам «блок» в вызывающем коде записыавется с помощью несколько необычного синтаксиса {|x| x + 1 }. Лично мне больше нравятся лямбды в C#, символ | упорно воспринимается как битовое ИЛИ (которое, кстати, в Rust также есть, как и все старые добные сишные операции).

3. Частичное применение - это создание функции на основе другой функции с большим количеством аргументов путем указания значений некоторых аргументов этой другой функции. Для этого используется ключевое слово bind и символ-заполнитель "_":

Let daynum = bind std::vec::position(_, ["mo", "tu", "we", "do", "fr", "sa", "su"])

Чтобы было понятнее, скажу сразу, что такое можно сделать на обычном Си путем создания простейшей обертки, как-то так:
const char* daynum (int i) { const char *s ={"mo", "tu", "we", "do", "fr", "sa", "su"}; return s[i]; }

Но частичное применение - это функциональный стиль, а не процедурный (кстати, из приведенного примера неясно, как сделать частичное применение, чтобы получить функцию без аргументов)

Еще пример: объявляется функция add с двумя аргументами int, возвращающая int. Далее объявляется функциональный тип single_param_fn, имеющий один аргумент int и возвращающий int. С помощью bind объявляются два функциональных объекта add4 и add5, построенные на основе функции add, у которой частично заданы аргументы.

Fn add(x: int, y: int) -> int { ret x + y; } type single_param_fn = fn(int) -> int; let add4: single_param_fn = bind add(4, _); let add5: single_param_fn = bind add(_, 5);

Функциональные объекты можно вызывать также, как и обычные функции.
assert (add(4,5) == add4(5)); assert (add(4,5) == add5(4));

4. Чистые функции и предикаты
Чистые (pure) функции - это функции, не имеющие побочных эффектов (в том числе не вызывающие никаких других функций, кроме чистых). Такие функции выдяляются ключевым словом pure.
pure fn lt_42(x: int) -> bool { ret (x < 42); }
Предикаты - это чистые (pure) функции, возвращающие тип bool. Такие функции могут использоваться в системе typestate (см. дальше), то есть вызываться на этапе компиляции для различных статических проверок.

Синтаксические макросы
Планируемая фича, но очень полезная. В Rust она пока на стадии начальной разработки.
std::io::println(#fmt("%s is %d", "the answer", 42));
Выражение, аналогичное сишному printf, но выполняющееся во время компиляции (соответственно, все ошибки аргументов выявляются на стадии компиляции). К сожалению, материалов по синтаксическим макросам крайне мало, да и сами они находятся в стадии разработки, но есть надежда что получится что-то типа макросов Nemerle .
Кстати, в отличие от того же Nemerle, решение выделить макросы синтаксически с помощью символа # считаю очень грамотным: макрос - это сущность, очень сильно отличающаяся от функции, и я считаю важным с первого взгляда видеть, где в коде вызываются функции, а где - макросы.

Атрибуты

Концепция, похожая на атрибуты C# (и даже со схожим синтаксисом). За это разработчикам отдельное спасибо. Как и следовало ожидать, атрибуты добавляют метаинформацию к той сущности, которую они аннотируют,
# fn register_win_service() { /* ... */ }
Придуман еще один вариант синтаксиса атрибутов - та же строка, но с точкой с запятой в конце, аннотирует текущий контекст. То есть то, что соответствует ближайшим фигурным скобкам, охватывающим такой атрибут.
fn register_win_service() { #; /* ... */ }

Параллельные вычисления

Пожалуй, одна из наиблее интересных частей языка. При этом в tutorial на данный момент не описана вообще:)
Программа на Rust состоит из «дерева задач». Каждая задача имеет функцию входа, собственный стек, средства взаимодействия с другими задачами - каналы для исходящей информации и порты для входящей, и владеет некоторой частью объектов в динамической куче.
Множество задач Rust могут существовать в рамках одного процесса операционной системы. Задачи Rust «легковесные»: каждая задача потребляет меньше памяти чем процесс ОС, и переключение между ними осуществляется быстрее чем переключение между процессами ОС (тут, вероятно, имеются в виду все-же «потоки»).

Задача состоит как минимум из одной функции без аргументов. Запуск задачи осуществляется с помощью функции spawn. Каждая задача может иметь каналы, с помощью которых она передает инфорацию другим задачам. Канал - это специальный шаблонный тип chan, параметризируемый типом данных канала. Например, chan - канал для передачи беззнаковых байтов.
Для передачи в канал используется функция send, первым аргументом которой является канал, а вторым - значение для передачи. Фактически эта функция помещает значение во внутренний буфер канала.
Для приема данных используются порты. Порт - это шаблонный тип port, параметризируемый типом данных порта: port - порт для приема беззнаковых байтов.
Для чтения из портов используется функция recv, аргументом которой является порт, а возвращаемым значением - данные из порта. Чтение блокирует задачу, т.е. если порт пуст, задача переходит в состояние ожидания до тех пор, пока другая задача не отправит на связанный с портом канал данные.
Связывание каналов с портами происходит очень просто - путем инициализации канала портом с помощью ключевого слова chan:
let reqport = port();
let reqchan = chan(reqport);
Несколько каналов могут быть подключены к одному порту, но не наоборот - один канал не может быть подключен одновременно к нескольким портам.

Typestate

Общепринятого перевода на русский понятия «typestate» я так и не нашел, поэтому буду называть это «состояния типов». Суть этой фичи в том, что кроме обычного контроля типов, принятого в статической типизации, возможны дополнительные контекстные проверки на этапе компиляции.
В том или ином виде состояния типов знакомы всем программистам - по сообщениям компилятора «переменная используется без инициализации». Компилятор определяет места, где переменная, в которую ни разу не было записи, используется для чтения, и выдает предупреждение. В более общем виде эта идея выглядит так: у каждого объекта есть набор состояний, которые он может принимать. В каждом состоянии для этого объекта определены допустимые и недопустимые операции. И компилятор может выполнять проверки - допустима ли конкретная операция над объектом в том или ином месте программы. Важно, что эти проверки выполняются на этапе компиляции.

Например, если у нас есть объект типа «файл», то у него может быть состояние «закрыт» и «открыт». И операция чтения из файла недопустима, если файл закрыт. В современных языках обычно функция чтения или бросает исключение, или возвращает код ошибки. Система состояний типов могла бы выявить такую ошибку на этапе компиляции - подобно тому, как компилятор определяет, что операция чтения переменной происходит до любой возможной операции записи, он мог бы определить, что метод «Read», допустимый в состоянии «файл открыт», вызывается до метода «Open», переводящего объект в это состояние.

В Rust существует понятие «предикаты» - специальные функции, не имеющие побочных эффектов и возвращающие тип bool. Такие функции могут использоваться компилятором для вызова на этапе компиляции с целью статических проверок тех или иных условий.

Ограничения (constraints) - это специальные проверки, которые могут выполняться на этапе компиляции. Для этого используется ключевое слово check.
pure fn is_less_than(int a, int b) -< bool { ret a < b; } fn test() { let x: int = 10; let y: int = 20; check is_less_than(x,y); }
Предикаты могут «навешиваться» на входные параметры функций таким вот способом:
fn test(int x, int y) : is_less_than(x,y) { ... }

Информации по typestate крайне мало, так что многие моменты пока непонятны, но концепция в любом случае интересная.

На этом все. Вполне возможно, что я все-же пропустил какие-то интересные моменты, но статья и так раздулась. При желании можно уже сейчас собрать компилятор Rust и попробовать поиграться с различными примерами. Информация по сборке приведена на

Перевод статьи Федерико Мена-Кинтеро, который, наряду с Мигелем де Икаса, основал проект GNOME - широко используемую, свободную графическую среду, в основном для систем GNU/Linux. Перед этим он некоторое время поддерживал GIMP . Сейчас Федерико активно развивает библиотеку librsvg с использованием языка программирования Rust. По его мнению, разработка достигла момента, когда портирование некоторых крупных компонент с C на Rust выглядит более лёгкой задачей, чем просто добавление аксессоров к ним. Федерико часто приходится переключаться с C на Rust и обратно, и в статье он рассказывает, почему считает C очень и очень примитивным языком для современного ПО.

Своего рода элегия по C

Я влюбился в язык программирования C около 24-ёх лет назад. Я выучил основы, прочитав испанский перевод второго издания «Языка программирования C» Кернигана/Ритчи (K&R) . До этого я писал на Turbo Pascal в довольно низкоуровневой манере - с указателями и ручным выделением памяти. После него C казался освежающим и мощным.

К&R - это отличная книга благодаря стилю изложения и лаконичности программирования. Эта книга даже учит, как реализовать простые функции malloc/free , что крайне поучительно. Даже такие низкоуровневые конструкции, которые выглядят как часть языка, могут быть реализованы на самом языке!

В последующие годы я хорошо освоил C. Это простой язык с небольшой стандартной библиотекой. Наверное, это был идеальный язык для реализации ядер Unix в 20 000 строк кода или около того.

GIMP и GTK+ научили меня тому, как использовать модный объектно-ориентированный подход в C. GNOME показал, как поддерживать крупномасштабные проекты, написанные на C. Стало казаться, что 20 000 строк C кода - это проект, который можно практически полностью понять за пару недель.

Но наши кодовые базы уже далеко не такие маленькие. Сейчас в процессе разработки программного обеспечения огромные надежды возлагаются на функции, доступные в стандартной библиотеке языка.

Опыт использования C

Положительный

  • Чтение исходного кода проекта POV-Ray впервые и изучение того, как использовать объектно-ориентированный подход и наследование в чистом C;
  • Чтение исходного кода проекта GTK+ и изучение читаемого, поддерживаемого и чистого стиля написания кода на C;
  • Чтение исходного кода проекта SIOD, а также ранних исходников проекта Guile и понимание того, как интерпретатор Scheme может быть написан на C;
  • Написание первых версий Eye of Gnome и доработка системы микротайлового рендеринга.

Негативный

  • Работа в команде Evolution, когда программа постоянно падала. Мы были вынуждены приобрести машину с Solaris на борту, чтобы иметь возможность купить Purify; в те времена Valgrind-а еще не существовало;
  • Отладка взаимных блокировок потоков в gnome-vfs;
  • Безуспешная отладка Mesa;
  • Когда мне передали исходники первых версий Nautilus-share, я увидел, что free() вообще не используется;
  • Попытки рефакторинга кода, о стратегии управления памятью которого я не имел понятия;
  • Попытка сделать библиотеку из кода, кишащего глобальными переменными, и в котором ни одна функция не помечена как static .

Фичи Rust, которых не хватает в C

Автоматическое управление ресурсами

Один из первых блог-постов, которые я прочитал о Rust, назывался «В Rust вам никогда не придётся закрывать сокет» . Rust заимствует у C++ идеи об идиоме (Resource Acquisition Is Initialization, получение ресурса есть инициализация) и умных указателях, добавляет принцип единоличного владения для значений и предоставляет механизм автоматического, детерминированного управления ресурсами в очень изящной упаковке.

  • Автоматическое: не нужно вызывать free() вручную. Память освободится, файлы закроются, мьютексы разблокируются, когда переменные выйдут из зоны видимости. Если вам нужно написать обёртку для стороннего ресурса, то всё, что нужно сделать, это реализовать типаж Drop. Обёрнутый ресурс ощущается как часть языка, потому что вам не приходится нянчиться с его временем жизни вручную;
  • Детерминированное: ресурсы создаются (память выделяется и инициализируется, файлы открываются и т. д.) и уничтожаются, когда выходят из зоны видимости. Никакой сборки мусора: ресурсы действительно освобождаются, когда вы закрываете скобку. Вы начинаете видеть время жизни данных в своей программе как дерево вызовов функций.

После того, как постоянно забываешь освобождать/закрывать/уничтожать объекты в C, или, ещё хуже, пытаешься понять, где в чужом коде забыли сделать что-то из этого (или ошибочно сделали дважды )… я просто больше этого не хочу.

Дженерики

Vec - это действительно вектор, размер элементов которого равен размеру объекта типа T . Это не массив указателей на объекты, память для которых выделялась отдельно. Он специально компилируется в код, который может работать только с объектами типа T .

После написания большого количества сомнительных макросов на C, чтобы сделать что-то похожее… я больше этого не хочу.

Типажи - это больше, чем просто интерфейсы

Rust - это не Java-подобный объектно-ориентированный язык, подробнее об этом можно прочитать в open-source книге «The Rust Programming Language» . Вместо этого в нём есть типажи, которые поначалу похожи на интерфейсы в Java, - простой способ осуществления динамического переключения (dynamic dispatch), так что если объект реализует Drawable , то можно предположить, что у него есть метод draw() .

Однако типажи - это более мощный инструмент. Одной из отличительных особенностей типажей можно считать ассоциированные типы (associated types). Например, Rust предоставляет типаж Iterator , который вы можете реализовать:

Pub trait Iterator { type Item; fn next(&mut self) -> Option; }

Это означает, что всякий раз, когда вы реализуете этот типаж для какого-либо объекта, поддерживающего итерирование, вы также указываете тип Item для значений, которые он выдаёт. Если вы вызываете next() и элементы ещё остались, вы получите Some(ТипВашегоЭлемента) . Когда у вашего итератора закончатся элементы, он вернет None .

Ассоциированные типы могут ссылаться на другие типажи.

Например, в Rust вы можете использовать циклы for со всем, что реализует типаж IntoIterator:

Pub trait IntoIterator { /// Тип элементов, по которым идёт итерация type Item; /// В какой тип итератора мы преобразуемся? type IntoIter: Iterator; fn into_iter(self) -> Self::IntoIter; }

Когда реализуете этот типаж, вы должны указать и тип элементов, которые будет выдавать ваш итератор, и сам тип IntoIter , который реализует типаж Iterator и хранит состояние вашего итератора.

Таким образом, вы можете построить настоящую сеть типов, которые ссылаются друг на друга. Вы можете написать типаж, который говорит: «Я могу сделать foo и bar, но только если вы дадите мне тип, который умеет делать вот это и это».

Срезы

Я уже писал о том, насколько в C не хватает срезов (slices) для работы со строками и какая это головная боль, когда привык, что они под рукой.

Современные инструменты для управления зависимостями

Вместо того, чтобы

  • Запускать pkg-config руками или через Autotools-макрос;
  • Сражаться с include-путями в заголовочных файлах…
  • … и библиотечных файлах;
  • И, по сути, полагаться на то, что пользователь гарантирует установку верных версий библиотек,

вы пишете файл Cargo.toml , в котором перечисляются названия и версии всех наших зависимостей. Они будут загружены из общеизвестного источника или из любого другого, указанного вами.

Не нужно сражаться с зависимостями. Оно просто работает, когда вы набираете cargo build .

Тесты

В C очень сложно покрывать код тестами по нескольким причинам:

  • Внутренние функции часто помечены как static . Это означает, что они не могут быть вызваны вне файла, в котором эта функция определена. Тестовая программа вынуждена либо #include -ить содержимое исходника, в котором функция объявлена, либо использовать #ifdef , чтобы убирать static только при тестировании;
  • Вам придётся плясать с бубном вокруг вашего Makefile, чтобы слинковать тестовую программу с определённой частью зависимостей основной или с какой-то частью оставшейся программы;
  • Вам придётся выбрать фреймворк для тестирования. Вам придётся зарегистрировать свои тесты в фреймворке для тестирования. Вам придётся изучить этот фреймворк.

В Rust вы пишете

# fn test_that_foo_works() { assert!(foo() == expected_result); }

в любом месте программы или библиотеки, и, когда вы набираете cargo test , ОНО ПРОСТО, *****, РАБОТАЕТ. Этот код линкуется только в тестовый исполняемый файл. Не нужно ничего компилировать дважды вручную, писать Makefile-магию или разбираться, как вытащить внутренние функции для тестирования.

Для меня это одна из главных киллер-фич языка.

Документация с тестами

Rust генерирует документацию на основе комментариев, размеченных с помощью Markdown. Код из документации запускается как обычные тесты . Вы можете показывать, как функция должна использоваться, одновременно тестируя её:

/// Multiples the specified number by two /// /// ``` /// assert_eq!(multiply_by_two(5), 10); /// ``` fn multiply_by_two(x: i32) -> i32 { x * 2 }

Код из примера запускается как тест, чтобы убедиться, что ваша документация своевременно обновляется вместе с кодом программы.

Гигиеничные макросы

В Rust особые гигиеничные макросы, позволяющие избежать проблем, при которых во время разворачивания C макросов происходит непреднамеренное затенение идентификаторов в коде. Вам больше не нужно писать макросы, заключая все символы в скобки, чтобы max(5 + 3, 4) работал правильно.

Никакого неявного приведения типов

Все эти баги, которые появляются в C из-за непреднамеренного приведения int к short или к char и т. п. - в Rust их нет. Вы должны приводить типы явно.

Никакого целочисленного переполнения

Этим всё сказано.

Как правило, никакого неопределённого поведения в безопасном режиме

В Rust, если что-то вызывает неопределенное поведение в «безопасном режиме» (всё, что написано вне блоков unsafe {}), это расценивается как баг самого языка. Например, можно сделать побитовый сдвиг отрицательного целого числа вправо и произойдёт именно то, что вы ожидаете.

Сопоставление с образцом

Знаете, как gcc выдает предупреждение, если вы используете switch() с перечислением (enum), но обработаете не все варианты? Это детский сад по сравнению с Rust.

В Rust в различных местах используется сопоставление с образцом . Он умеет делать эту штуку с перечислениями в match-выражении. Он поддерживает деструктурирование, а это значит, что можно возвращать несколько значений из функции:

Impl f64 { pub fn sin_cos(self) -> (f64, f64); } let angle: f64 = 42.0; let (sin_angle, cos_angle) = angle.sin_cos();

match работает на строках. ВЫ МОЖЕТЕ МАТЧИТЬ ГРЁБАНЫЕ СТРОКИ.

Let color = "зеленый"; match color { "красный" => println!("Это красный"), "зеленый" => println!("Это зеленый"), _ => println!("Что-то другое"), }

Вы же знаете, насколько такое плохо читается?

my_func(true, false, false)

Как насчет того, чтобы вместо этого использовать сопоставление с образцом на аргументах функции:

Pub struct Fubarize(pub bool); pub struct Frobnify(pub bool); pub struct Bazificate(pub bool); fn my_func(Fubarize(fub): Fubarize, Frobnify(frob): Frobnify, Bazificate(baz): Bazificate) { if fub { ...; } if frob && baz { ...; } } ... my_func(Fubarize(true), Frobnify(false), Bazificate(true));

Стандартная полезная обработка ошибок

Я подробно останавливался на этом. Больше никаких булевых возвращаемых значений без нормального описания ошибки, никаких случайно проигнорированных ошибок, никакой обработки исключительных ситуаций longjmp-ами.

#

Если вы пишете новый тип (скажем, структуру с кучей полей), то можно написать # , и Rust будет знать, как автоматически напечатать содержимое этого типа для отладки. Больше не нужно руками писать специальную функцию, которую затем придётся вызывать из gdb, только для того, чтобы посмотреть содержимое полей пользовательского типа.

Замыкания

Вам больше не придётся передавать указатели на функцию и user_data вручную.

Заключение

Я пока не попробовал «fearless concurrency» , где компилятор может предотвращать гонки данных в многопоточном коде. Я полагаю, что это в корне меняет положение дел для людей, которые пишут параллельный код на регулярной основе.

C - это старый язык с примитивными конструкциями и примитивными инструментами. Он хорошо подходил для небольших однопроцессорных Unix-ядер, которые работали в доверенных, академических средах. Но для современного программного обеспечения он больше не подходит.

Rust непросто освоить, но я уверен, что это того стоит. Сложность в том, что язык требует от вас глубокого понимания кода, который вы хотите написать. Я думаю, что это один из тех языков, которые делают вас лучше как программиста и позволяют решать более амбициозные проблемы.

Rust развивается стабильно, новые возможности и исправления вводятся с каждым релизом раз в 6 недель. Замеченные баги тоже исправляются оперативно в нерегулярных минорных релизах. Иногда такая динамика развития даже может служить препятствием: многие "живые" библиотеки требуют новой версии компилятора, но не всякая компания способна быстро обновлять его на своих проектах.

Инфроструктура вокруг Rust хотя и развивается, все равно еще остается сырой. Многие библиотеки, хотя и работают уже достаточно стабильно, все равно в реальном использовании требуют небольших доработок. Если вы готовы форкать на GitHub такие библиотеки и слегка дорабатывать под свои нужды, то я думаю у вас больше никаких особых проблем с использованием Rust в боевых проектах возникнуть не должно.

Какого-то единого сборника лучших практик использования Rust, насколько я знаю, пока нет. Много полезных советов есть в официальной документации (в так называемых Книгах), а также разбросано по разным отдельным статьям. Однако, существуют списки полезных статей, которые помогут найти среди них нужную. Например эти:
https://github.com/ctjhoa/rust-learning
https://github.com/brson/rust-anthology/blob/maste...

В новых проектах Rust используется, и пока тенденция идет на расширение. Вот на этой странице вы можете посмотреть, какие компании используют Rust сейчас и для чего: https://www.rust-lang.org/en-US/friends.html

Итак, если вы планируете использовать Rust в производстве, готовьтесь вот к чему:

  1. Довольно высокий порог входа в язык. Тут нет особой сложности, просто потребуется практика на языке и поначалу время на следование советам компилятора по устранению постоянно возникающих ошибок компиляции.
  2. Достаточно частые обновления компилятора по добавлению новых возможностей в язык. Это может приводить к тому, что нужная вам библиотека будет требовать свежую версию компилятора.
  3. Сыроватые библиотки. Вероятно, вам придется их слегка дорабатывать под себя.
  4. Rust упрощает сложное, но усложняет простое. Для совсем простых проектов, не требующих высокой производительности и серьезных доработок в будущем, возможно, Rust будет не лучшим выбором.
Но что вы получите от использования Rust?
  1. Высокую производительность программ, автоматическое управление памятью без сборщика мусора.
  2. Высокую надежность и защищенность программ, устранение большого количества потенциальных проблем на этапе компиляции.
  3. Достаточно легкий и безопасный процесс рефакторинга и доработки программ, благодаря развитой системе типов.
  4. Развитую систему управления зависимостями проекта.
  5. Действительно хороший универсальный инструмент: Rust подойдет и для прототипирования, и для разработки, причем для любого типа программ (утилиты, настольные приложения, веб-приложения, мобильные приложения, встраиваемые системы). Хорошая поддержка пока еще есть не для всего, но на перспективу - это большой плюс.

Top