Безопасный разрядник конденсаторов своими руками. Почему незаряженный конденсатор замыкает резистор в основной цепи постоянного тока? Как проверить высоковольтный конденсатор микроволновки

При массовом использовании в быту микроволновых печах СВЧ происходит и большое количество нарушений в их работе, поломки. Многих людей, кто столкнулся с этим, интересует, как проверить своими силами конденсатор микроволновки. Здесь можно узнать ответ на этот вопрос.

Конденсатор для микроволновки

Принцип устройства

Конденсатор является приспособлением, имеющим способность копить определенный заряд электричества. Он представляет собой две пластины из металла, установленные параллельно, между которыми находится диэлектрик. Увеличение площади пластин увеличивает накопленный заряд в устройстве.

Конденсаторы бывают 2-х видов: полярные и неполярные. Все полярные приспособления – электролитические. Емкость их от 0.1 ÷ 100000 мкФ.

При проверке полярного приспособления важно соблюдение полярности, когда плюсовая клемма присоединена к плюсовому выводу, а минусовая к минусовому.

Высоковольтными являются именно полярные конденсаторы, у неполярных – малая емкость.

Микроволновка с указанием места расположения конденсатора

В цепь питания магнетрона микроволновки входит диод, трансформатор, конденсатор. Через них к катоду идет до 2-х, 3-х киловольт.

Конденсатор – это большая деталь весом до 100 гр. К нему присоединяется вывод диода, второй на корпусе. Вблизи блока размещается также цилиндр. Конкретно данный цилиндр представляет собой высоковольтный предохранитель. Он не должен допустить перегревание магнетрона.

Расположение конденсатора

Как разрядить конденсатор в микроволновке

Разрядить его возможно такими способами:

Отключив от электросети, конденсатор разряжают, осмотрительно замкнув отверткой его клеммы. Хороший разряд свидетельствует о его исправном состоянии. Такой способ разрядки самый распространенный, хотя некоторые считают его опасным, способным нанести вред и разрушить приспособление.

Разряд конденсатора отвертками

У высоковольтного конденсатора есть интегрированный резистор. Он работает для разряда детали. Приспособление располагается под высочайшим напряжением (2 кВ), и потому есть необходимость в его разряде в основном на корпус. Детали с ёмкостью более 100 мкФ и напряжением от 63V лучше разряжать через резистор 5-20 килоОм и 1 – 2 Вт. Для чего концы резистора объединяют с клеммами приспособления на некоторое количество секунд, чтобы снять заряд. Это необходимо для предотвращения возникновение сильной искры. Потому надо побеспокоиться об личной безопасности.

Как проверить высоковольтный конденсатор микроволновки

Высоковольтный конденсатор проверяют его подключением вместе с лампой 15 Вт Х 220 В. Дальше выключают объединенные конденсатор и лампочку из розетки. При рабочем состоянии детали лампа станет светиться в 2 раза меньше, чем обычно. При нарушениях в работе лампочка ярко светит или не светится вообще.

Проверка с лампочкой

Конденсатор микроволновки имеет емкость 1.07 мф, 2200 в, потому испытать его с поддержкою мультиметра достаточно просто:

1. Необходимо подключить мультиметр так, чтобы измерять сопротивление, а именно наибольшее сопротивление. На устройстве сделать до 2000k.

2. Потом необходимо включить незаряженное приспособление к клеммам мультиметра, не дотрагиваясь их. При рабочем состоянии показания станут 10 кОм, переходящие в бесконечность (на мониторе 1).

3. Потом необходимо изменить клеммы.

4. Когда при включении его к устройству на мониторе мультиметра ничто не поменяется, это означает, приспособление в обрыве, когда будет нуль, означает, что в нем пробой. При показании в устройстве постоянного сопротивления, пусть небольшого значения, значит, в приспособлении есть утечка. Его необходимо сменить.

Проверка мультиметром

Проверка мультиметром

Эти испытания сделаны на невысоком напряжении. Часто неисправные приспособления не показывают нарушения на невысоком напряжении. Потому для испытания нужно применять или мегаомметр с напряжением одинаковым напряжению конденсатора, или будет нужен наружный источник высокого напряжения.

Мультиметром его элементарно так испытать невозможно. Он продемонстрирует лишь, что обрыва нет и короткое замыкание. Для этого необходимо в режиме омметра присоединить его к детали – в исправном состоянии он продемонстрирует невысокое сопротивление, которое за некоторое количество секунд вырастет по бесконечности.

Неисправный конденсатор имеет утечку электролита. Сделать определение емкости особым устройством не трудно. Надо его подключить, поставить на большее значение, и соприкоснуться клеммами к выводам. Сверить с нормативными. Когда отличия маленькие (± 15 %), деталь исправна, но когда их нет или значительно ниже нормы, значит, она пришло в негодность.

Для испытания детали омметром:

1. Надо снять наружную крышку и клеммы.

2. Разрядить его.

3. Переключить мультиметр для испытания сопротивления 2000 килоОм.

4. Исследуйте клеммы на присутствие механических дефектов. Плохой контакт станет негативно воздействовать на качество измерения.

5. Соедините клеммы с концами устройства и смотрите за числовыми измерениями. Когда числа начинают изменяться так: 1…10…102.1, означает, что деталь в рабочем состоянии. Когда значения не изменяются или появляется нуль, значит приспособление в нерабочем состоянии.

6. Для другого испытания приспособление надо разрядить и снова подтвердить.

Проверка омметром

Проверка омметром

Испытать конденсатор для обнаружения нарушений в работе возможно и тестером. Для этого надо настроить измерения в килоОм, и смотреть за испытанием. При соприкосновении клемм сопротивление должно снизиться практически до нулевой отметки, и за несколько секунд подрасти до показания на табло 1. Наиболее замедленным этот процесс будет, когда включить замеры на 10-ки и сотки килоОм.

Работа по проверке конденсатора

Проходные конденсаторы магнетрона в микроволновке проходят проверку тоже тестером. Надо тронуть выводами устройства вывод магнетрона и его корпуса. Когда на табло будет 1 - конденсаторы исправны. При появлении показаний сопротивления означает, что один из них пробит или в утечке. Их надо сменить на новые детали.

Проверка исправности проходных конденсаторов

Одной из причин нарушений работы конденсатора есть утрата части емкости. Она становится другой, не так, как на корпусе.

Найти это нарушение при поддержке омметра трудно. Нужен датчик, который есть не в каждом мультиметре. Обрыв в детали бывает при механических воздействиях не так часто. Значительно чаще происходит нарушения за счет пробоя и утраты емкости.

Микроволновка не производит нагревание микроволной из-за того, что в детали есть утечка, которая не обнаруживается обыкновенным омметром. Потому надо целенаправленно испытать деталь при поддержке мегомметра с использованием высокого напряжения.

Действия при испытании будут следующие:

  1. Нужно поставить наибольший предел измерения в режиме омметра.
  2. Щупами измерительного устройства дотрагиваемся до выводов детали.
  3. Когда на табло отражается «1», показывает нам, что сопротивление более 2-ух мегаом, следственно, в рабочем состоянии, в другом варианте мультиметр продемонстрирует меньшее значение, что значит, что деталь в нерабочем состоянии и пришла в негодность.

Перед тем как начинать починку всех электроустройств, нужно удостовериться, что нет питания.

После проверки деталей надо принимать меры к замене тех из них, которые находятся в нерабочем состоянии, новыми, более совершенными.

Разряд конденсатора на корпус

A конденсатор делает имеет «сопротивление»; но поскольку конденсатор в основном отличается от резистора , он не считается таким образом.

Резистор имеет Статическое сопротивление . Неважно, в какое время оно измеряется или какое напряжение применяется - сопротивление остается неизменным.

Конденсатор имеет статическую емкость . Это имеет значение, в какое время оно измеряется, И какое напряжение применяется - так как это «сопротивление» будет другим!

В момент выброса выключателя конденсатор выглядит как короткое замыкание (низкое сопротивление), потому что не заряжается на его пластинах. Как можно «зарядить» большие потоки? Из-за того, что равно , все равно это накладывает поток электронов. Это похоже на пустую батарею с нулевым внутренним сопротивлением - если она пуста, тогда она поглотит каждый бит энергии, который можно вставить в нее. Поэтому изначально конденсатор кажется коротким или низким значением сопротивления, пока он не начнет заряжаться.

Как заряжает конденсатор, он начинает вести себя как короткий. Таким образом, можно сказать, что это «сопротивление» начинает увеличиваться (как аналог.) До такой степени, когда он полностью заполнен и отказывается принимать больше электричества - тогда это будет похоже на очень высокое сопротивление.

Но учтите, что это постоянное напряжение. Если конденсатор «заряжен», чтобы сказать, 5v, то напряжение внезапно изменяется на 10v, тогда конденсатор будет реагировать точно так же, как и при переходе от 0v до 5v. (Первоначально «короткий», а затем постепенно ведет себя меньше). Здесь ответ Сиксто является спот-на - скорость изменения определяет ток, который пропорционален. Мгновенное изменение напряжения = мгновенное изменение тока.

Теперь еще одна интересная деталь: этот «накопленный заряд на пластинах» представляет собой потенциальную энергию, то есть ее можно извлечь и использовать в другом месте. Так, например, зарядка небольшого конденсатора до 3 В, а затем установка белого светодиода на его клеммы, приведет к тому, что конденсатор разрядит сохраненный заряд в обратном направлении - через светодиод, заставляя его загораться на короткое время.

Продолжительность времени, в течение которого он может приводить в действие светодиод, непосредственно связан с его емкостью: $C = \frac{Q}{V}$ Чем больше конденсатор физически (чем больше потенциал Q), тем больше емкость, и, следовательно, тем больше способность поглощать и выделять электроны для любого заданного напряжения.

Закон Ома всегда относится к DC - всегда - вот почему это называется законом. Но это не DC ... заряд меняется со временем, вольт меняется, усилители меняются... так что это домен переменного тока.

Присоединим цепь, состоящую из незаряженного конденсатора емкостью С и резистора с сопротивлением R, к источнику питания с постоянным напряжением U (рис. 16-4).

Так как в момент включения конденсатор еще не заряжен, то напряжение на нем Поэтому в цепи в начальный момент времени падение напряжения на сопротивлении R равно U и возникает ток, сила которого

Рис. 16-4. Зарядка конденсатора.

Прохождение тока i сопровождается постепенным накоплением заряда Q на конденсаторе, на нем появляется напряжение и падение напряжения на сопротивлении R уменьшается:

как и следует из второго закона Кирхгофа. Следовательно, сила тока

уменьшается, уменьшается и скорость накопления заряда Q, так как ток в цепи

С течением времени конденсатор продолжает заряжаться, но заряд Q и напряжение на нем растут все медленнее (рис. 16-5), а сила тока в цепи постепенно уменьшается пропорционально разности - напряжений

Рис. 16-5. График изменения тока и напряжения при зарядке конденсатора.

Через достаточно большой интервал времени (теоретически бесконечно большой) напряжение на конденсаторе достигает величины, равной напряжению источника питания, а ток становится равным нулю - процесс зарядки конденсатора заканчивается.

Процесс зарядки конденсатора тем продолжительней, чем больше сопротивление цепи R, ограничивающее силу тока, и чем больше емкость конденсатора С, так как при большой емкости должен накопиться больший заряд. Скорость протекания процесса характеризуют постоянной времени цепи

чем больше , тем медленнее процесс.

Постоянная времени цепи имеет размерность времени, так как

Через интервал времени с момента включения цепи, равный , напряжение на конденсаторе достигает примерно 63% напряжения источника питания, а через интервал процесс зарядки конденсатора можно считать закончившимся.

Напряжение на конденсаторе при зарядке

т. е. оно равно разности постоянного напряжения источника питания и свободного напряжения убывающего с течением времени по закону показательной функции от значения U до нуля (рис. 16-5).

Зарядный ток конденсатора

Ток от начального значения постепенно уменьшается по закону показательной функции (рис. 16-5).

б) Разряд конденсатора

Рассмотрим теперь процесс разряда конденсатора С, который был заряжен от источника питания до напряжения U через резистор с сопротивлением R (рис. 16-6, Где переключатель переводится из положения 1 в положение 2).

Рис. 16-6. Разряд конденсатора на резистор.

Рис. 16-7. График изменения тока и напряжения при разрядке конденсатора.

В начальный момент, в цепи возникнет ток и конденсатор начнет разряжаться, а напряжение на нем уменьшаться. По мере уменьшения напряжения будет уменьшаться и ток в цепи (рис. 16-7). Через интервал времени напряжение на конденсаторе и ток цепи уменьшатся при мерно до 1% начальных значений и процесс разряда конденсатора можно считать закончившимся.

Напряжение на конденсаторе при разряде

т. е. уменьшается по закону показательной функции (рис. 16-7).

Разрядный ток конденсатора

т. е. он, так же как и напряжение, уменьшается по тому же закону (рис. 6-7).

Вся энергия, запасенная при зарядке конденсатора в его электрическом поле, при разряде выделяется в виде тепла в сопротивлении R.

Электрическое поле заряженного конденсатора, отсоединенного от источника питания, не может долго сохраняться неизменным, так как диэлектрик конденсатора и изоляция между его зажимами обладают некоторой проводимостью.

Разряд конденсатора, обусловленный несовершенством диэлектрика и изоляции, называется саморазрядом. Постоянная времени при саморазряде конденсатора не зависит от формы обкладок и расстояния между ними.

Процессы зарядки и разряда конденсатора называются переходными процессами.

Постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:


Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:


Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:


Спаиваем как-то вот так и подаем сигнал с генератора частоты:


Далее за дело берется . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.


Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:


Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F – это частота, Ma – амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал – желтым, для удобства восприятия.


Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то “лохматый”. Это связано с так называемыми “ “. Шум – это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо “шумит” резистор. Значит “лохматость” сигнала – это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц


На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца


На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц


Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:


Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:


По вертикали я отложил напряжение, по горизонтали – частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:







Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт(в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, измеряется в Герцах

С – емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

Конденсаторы широко применяются в бытовых электрических приборах и в электронном оборудовании. При подключении к источнику энергии они запасают электрический заряд, после чего их можно использовать для питания различных приборов и устройств или просто в качестве источника заряда. Прежде чем разбирать или ремонтировать бытовой прибор или электронное устройство, необходимо разрядить его конденсатор. Часто это можно безопасно сделать с помощью обычной изолирующей отвертки. Однако в случае более крупных конденсаторов, которые обычно используются не в электронных устройствах, а в бытовой технике, лучше собрать специальное разрядное устройство и воспользоваться им. Сначала проверьте, заряжен ли конденсатор, и при необходимости выберите подходящий способ разрядить его.


Внимание: информация в данной статье носит исключительно ознакомительный характер.

Шаги

Проверьте, заряжен ли конденсатор

    Отключите конденсатор от источника энергии. Если конденсатор еще подключен к цепи, отсоедините его от всех источников питания. Обычно для этого достаточно выключить бытовой прибор из розетки или отсоединить контакты аккумулятора в автомобиле.

    • Если вы имеете дело с автомобилем, найдите аккумулятор в капоте и с помощью обычного или торцового гаечного ключа ослабьте гайку, которая удерживает кабель на отрицательной (-) клемме. После этого снимите кабель с клеммы, чтобы отсоединить аккумулятор.
    • Дома достаточно обычно вынуть вилку прибора из розетки, однако если вы не можете сделать это, найдите распределительный щит и выключите те предохранители или автоматические выключатели, которые контролируют подачу электроэнергии в нужное вам помещение.
  1. Выберите на мультиметре максимальный диапазон напряжения DC (постоянного тока). Максимальное напряжение зависит от марки мультиметра. Поверните ручку в центре мультиметра так, чтобы она указывала на максимально возможное значение напряжения.

    • Максимальное значение напряжения следует выбрать для того, чтобы получить правильные показания независимо от величины заряда на конденсаторе.
  2. Подсоедините щупы мультиметра к клеммам конденсатора. Из крышки конденсатора должно выступать два стержня. Просто прикоснитесь красным зондом мультиметра к одной, а черным - ко второй клемме конденсатора. Прижимайте щупы к клеммам до тех пор, пока на дисплее мультиметра не появятся показания.

    • Возможно, вам придется открыть устройство или извлечь из него некоторые детали, чтобы добраться до конденсатора. Если вы не можете найти конденсатор или добраться до него, загляните в руководство по эксплуатации.
    • Не прикасайтесь обоими щупами мультиметра к одной клемме, так как в этом случае вы получите неправильные показания.
    • Не имеет значения, какой щуп прижимать к какой клемме, так как в любом случае значение тока будет одинаковым.
  3. Обращайте внимание на показания, которые превышают 10 вольт. В зависимости от того, с чем вы имеете дело, мультиметр может показать напряжение от нескольких до сотен вольт. Вообще говоря, напряжение выше 10 вольт считается достаточно опасным, так как оно может вызвать удар током.

    • Если мультиметр показывает меньше 10 вольт, нет необходимости разряжать конденсатор.
    • Если показания мультиметра лежат в интервале 10–99 вольт, разрядите конденсатор отверткой.
    • Если на конденсаторе напряжение выше 100 вольт, безопаснее использовать не отвертку, а разрядное устройство.

    Разрядите конденсатор отверткой

    1. Держите руки в стороне от клемм. Заряженный конденсатор очень опасен, и к его клеммам ни в коем случае не следует прикасаться. Берите конденсатор исключительно за боковые стороны.

      • Если прикоснуться к двум клеммам или случайно замкнуть их инструментом, можно получить болезненный удар током или ожог.
    2. Выберите изолирующую отвертку. Обычно такие отвертки имеют резиновую или пластиковую ручку, которая создает изолирующий барьер между вашими руками и металлической частью отвертки. Если у вас нет изолирующей отвертки, приобретите отвертку, на упаковке которой ясно указано, что она не проводит ток. На многих отвертках даже указывается, на какие напряжения они рассчитаны.

      • Если вы не уверены, изолирующая ли у вас отвертка, лучше приобрести новую отвертку.
      • Изолирующую отвертку можно приобрести в магазине хозяйственных товаров или товаров для автомобиля.
      • Можно использовать как плоскую, так и крестовую отвертку.
    3. Проверьте, нет ли на ручке отвертки признаков каких-либо повреждений. Не используйте отвертку с резиновой или пластиковой ручкой, если она разбита, расколота или имеет трещины. Через подобные повреждения ток может достичь ваших рук, когда вы будете разряжать конденсатор.

      • Если ручка вашей отвертки повреждена, приобретите новую изолирующую отвертку.
      • Необязательно выбрасывать отвертку с поврежденной ручкой, просто не используйте ее для того, чтобы разрядить конденсатор, а также для других работ с электрическими деталями и устройствами.
    4. Возьмите конденсатор одной рукой у основания. При разрядке конденсатора необходимо прочно удерживать его, поэтому возьмите его за цилиндрические стороны вблизи основания своей неосновной рукой. Согните пальцы буквой “C” и охватите ими конденсатор. Держите пальцы подальше от верхней части конденсатора, где расположены клеммы.

      • Держите конденсатор так, как вам удобно. Нет необходимости сжимать его слишком сильно.
      • Удерживайте конденсатор возле основания, чтобы на пальцы не попали искры, которые могут возникнуть при его разрядке.
    5. Положите отвертку на обе клеммы. Возьмите конденсатор вертикально, так чтобы клеммы были направлены к потолку, а второй рукой поднесите отвертку и прижмите ее одновременно к обеим клеммам.

      • При этом вы услышите звук электрического разряда и увидите искру.
      • Проследите, чтобы отвертка касалась обеих клемм, иначе конденсатор не разрядится.
    6. Прикоснитесь к конденсатору еще раз, чтобы проверить, что он разряжен. Прежде чем свободно обращаться с конденсатором, уберите отвертку, а затем вновь прикоснитесь ею к обеим клеммам и проверьте, нет ли искры. При этом не возникнет никакого разряда, если вы полностью разрядили конденсатор.

      • Данный шаг представляет собой меру предосторожности.
      • После того как вы убедитесь, что конденсатор разряжен, с ним можно безопасно работать дальше.
      • При желании можно проверить также, разряжен ли конденсатор, с помощью мультиметра.

    Сделайте и используйте разрядное устройство

    1. Приобретите медную проволоку диаметром 2 миллиметра, резистор с номинальным сопротивлением 20 кОм и рассеиваемым напряжением 5 Вт и 2 зажима «крокодил». Разрядное устройство представляет собой всего лишь резистор и немного проволоки для того, чтобы подсоединить его к конденсатору. Все это можно приобрести в магазине хозяйственных или электрических товаров.

      • С помощью зажимов вы сможете легко подсоединить проволоку к клеммам конденсатора.
      • Понадобится также изоляционная лента или пленка и паяльник.
    2. Отрежьте от проволоки два куска длиной около 15 сантиметров. Точная длина не важна, лишь бы вы смогли подсоединить резистор к конденсатору. В большинстве случаев должно хватить 15 сантиметров, хотя иногда может потребоваться больше.

      • Куски проволоки должны быть достаточно длинными, чтобы ими можно было соединить клеммы резистора и конденсатора.
      • Отрежьте проволоку с небольшим запасом, чтобы облегчить себе работу.
    3. Снимите изоляционное покрытие с обоих концов каждого куска проволоки примерно на 0,5 сантиметра. Возьмите щипцы для зачистки проводов и очистите проволоку от изоляционного покрытия так, чтобы не повредить ее середину. Если у вас нет таких щипцов, надрежьте покрытие ножом или лезвием, а затем вытяните проволоку пальцами.

      • На обоих концах проволоки должен остаться чистый металл.
      • Удалите достаточно изоляционного покрытия, чтобы можно было припаять очищенные концы к клеммам и зажимам.
    4. Припаяйте по одному концу каждого куска проволоки к выводу резистора. Из обоих концов резистора торчит по одному проводу. Оберните конец одного куска проволоки вокруг первой клеммы резистора и припаяйте его. Затем оберните один конец второго куска проволоки вокруг второй клеммы резистора и также припаяйте.

      • В результате у вас получится резистор с длинными проводами на каждом конце.
      • Пока что оставьте вторые концы проводов свободными.
    5. Обмотайте места пайки изоляционной лентой или термоусадочной пленкой. Просто обмотайте паяные соединения лентой. Таким образом вы плотнее зафиксируете их и изолируете от внешних контактов. Если вы собираетесь использовать данное устройство повторно, наденьте на конец провода пластиковую изоляционную трубку и надвиньте ее на место пайки.


Top